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SUMMARY Polyamines are small, abundant, aliphatic molecules present in all mam-
malian cells. Within the context of the cell, they play a myriad of roles, from modu-
lating nucleic acid conformation to promoting cellular proliferation and signaling. In
addition, polyamines have emerged as important molecules in virus-host interac-
tions. Many viruses have been shown to require polyamines for one or more aspects
of their replication cycle, including DNA and RNA polymerization, nucleic acid pack-
aging, and protein synthesis. Understanding the role of polyamines has become eas-
ier with the application of small-molecule inhibitors of polyamine synthesis and the
use of interferon-induced regulators of polyamines. Here we review the diverse
mechanisms in which viruses require polyamines and investigate blocking polyamine
synthesis as a potential broad-spectrum antiviral approach.

KEYWORDS DNA virus, RNA virus, eIF5A, polyamines

INTRODUCTION

For all viruses, the ability to coopt the host cell’s resources for their own replication
is essential, as viral genomes do not encode protein synthesis machinery, which is

necessary for productive infection. Nucleic acids, amino acids, translational machinery,
and membranes are all host components commonly appropriated from the infected
cell, but the list can extend to signaling proteins and transcription factors as well.
Understanding how viruses use host cell resources provides insight into how viruses
replicate and, importantly, how these processes could be disrupted to block viral
infection. Several antiviral strategies that exploit the viral dependence on host factors
have emerged. These range from the use of nucleoside analogs which will block viral
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replication due to viral dependence on host-derived nucleotides (e.g., ribavirin for
hepatitis C virus) to the use of entry receptor blockers that interfere with the ability of
viruses to get into cells (e.g., maraviroc for HIV) (1).

The success of these approaches has led to the search for additional host factors that
could be drug targeted to limit virus replication. Among many promising potential host
targets that have been described to be important for virus replication, recent studies have
revived interest in the role of polyamines in virus replication. Polyamines have now been
suggested to have a role in the replication of viruses across all known viral replication
strategies and most viral families. This has led to the investigation of inhibitors of polyamine
synthesis as inhibitors of many different viruses. Targeting the polyamine biosynthetic
pathway may hold promise for the development of broad-spectrum antivirals.

POLYAMINES
What Are Polyamines?

Polyamines are abundant molecules consisting of flexible carbon chains with amino
groups that are positively charged at neutral pH. In eukaryotes, there are three biogenic

FIG 1 The mammalian biogenic polyamines and metabolic pathways. The polyamines putrescine, spermi-
dine, and spermine (A) are synthesized from the ornithine precursor via a series of enzymatic reactions (B)
that elongate the structure of the polyamine and add amino groups. Amino groups are protonated at
physiological pH and comprise the aliphatic properties of the polyamines. The biogenic polyamines are
highlighted in purple. Anabolic enzymes that promote the synthesis of polyamines are displayed in green,
while catabolic enzymes are displayed in orange. Pharmaceuticals targeting the polyamine pathway are
highlighted in red. AZIN1, antizyme inhibitor; MTA, 5’-methylthioadenosine; DHPS, deoxyhypusine syn-
thase; SMO, spermine oxidase.
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molecules considered to be polyamines (Fig. 1A), and they are all created through a
single synthetic pathway. Bacteria and archaea have a more diverse repertoire of
polyamines, including spermidine, homospermidine, norspermidine, putrescine, cadav-
erine, and 1,3-diaminopropane in bacteria and agmatine, spermidine, homospermidine,
norspermidine, and norspermine in archaea. The variety of polyamines present in each
of these kingdoms varies among the different organisms (2). The core polyamine
synthesis pathway present in mammals is summarized in Fig. 1B. Within the cell,
arginine is converted to ornithine, which is converted into the polyamine putrescine via
the action of ornithine decarboxylase 1 (ODC1). Putrescine is converted into spermidine
via the action of spermidine synthase (SRM); spermidine is converted into spermine via
spermine synthase (SMS). Spermine can further be catabolized back to spermidine and
putrescine via the action of spermidine/spermine acetyltransferase 1 (SAT1) and poly-
amine oxidase (PAOX). The cell exerts significant amounts of energy in maintaining
polyamine homeostasis through synthesis, degradation, import, and export, highlight-
ing the importance of this pathway to the cell. Polyamines frequently regulate the
enzymes involved in their own metabolism, providing a tightly controlled feedback
mechanism. For example, ODC1 turnover is regulated by ODC1 antizyme (OAZ1) (3, 4).
Translation of OAZ1 is regulated by a frameshifting mechanism that is polyamine
dependent (5). ODC1 translation can also be cap dependent or internal ribosome entry
site (IRES) dependent at different stages of the cell cycle, providing differential regu-
lation of this enzyme (6). Polyamine levels also affect the translation and activity of
S-adenosylmethionine decarboxylase (SAMDC), a critical enzyme in the production of
spermidine and spermine from putrescine, through the translation of an upstream
open reading frame (ORF) (7–10).

Polyamines in Cellular Processes

Putrescine, spermidine, and spermine are found in all mammalian cells, though at
various concentrations in different organisms (2). Within the context of a normal
healthy cell, polyamines are involved in diverse cellular processes such as protein
synthesis, RNA folding and bending, membrane interactions, protein-RNA interactions,
DNA structure, and gene expression (Fig. 2) (reviewed in references 11–14). Polyamines
bind both RNA and DNA, altering the conformation and function of nucleic acids.
Polyamines alter DNA structure by facilitating the conformational transition from the B
form to the Z form (15) or by bending DNA (16–18). Furthermore, up to 80% of
polyamines in the cell are directly associated with RNA (11), and spermine has also been
implicated in the stabilization of tRNA structure (19, 20).

Spermidine further serves as a substrate molecule for the enzyme deoxyhypusine
synthase, which acts to posttranslationally generate the unique amino acid hypusine by
converting a lysine at amino acid 50 in eukaryotic initiation factor 5A (eIF5A), a cellular
translation factor. Hypusination of eIF5A at amino acid 50 is accomplished through a
two-enzyme cascade, summarized in Fig. 1B. First, deoxyhypusine synthase (DHS)
transfers an aminobutyl moiety from spermidine to the lysine residue on eIF5A (Fig. 1B).
The deoxyhypusine residue is then hydroxylated by deoxyhypusine hydroxylase
(DOHH) to form the hypusine residue (21). Importantly, eIF5A is the only known protein
in the cell that contains hypusine, and hypusination is critical for its eIF5A function (22).
Within the cell, hypusinated eIF5A has been suggested to play many roles. In addition
to its original identification as a stimulator of dipeptide synthesis, eIF5A has been
suggested to facilitate mRNA nucleocytoplasmic transport and mRNA stability (23, 24).
Most recently, the suggested role for eIF5A in mRNA translation has been modified
from being involved in translation initiation to also being important for the translation
of “hard-to-translate” regions such as polyproline stretches (25; reviewed in references
26 and 27) and translation termination (28).

ROLES OF POLYAMINES IN VIRAL INFECTIONS

Given the abundance of polyamines within the cell and the importance of these
molecules for nucleotide charge neutralization, among other functions, it is not entirely
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surprising that viruses utilize and manipulate polyamines for their own replication
(summarized in Table 1). Viruses rely on polyamines for numerous stages in the viral life
cycle, including genome packaging, DNA-dependent RNA polymerization, genome
replication, and viral protein translation. Some viruses also appear to stimulate poly-
amine synthesis upon infection, highlighting the importance of this pathway for viral
replication.

Structural Role of Polyamines in Virions

One aspect of replication where polyamines have been implicated is in packaging
the viral genome into virions. Genome packaging is an essential process in the viral life
cycle. The negative charges of the DNA/RNA backbone must be balanced if the genome
is to be tightly packed. Viruses have developed various mechanisms to facilitate tight
packing, including balancing negative charge with a positively charged domain of a
capsid protein, surrounding the genome with positively charged single-stranded RNA
(ssRNA)/DNA binding proteins, or neutralizing the charge with polyamines (29).

Several DNA viruses utilize polyamines to balance the negatively charged genome
within the virion particle. DNA viruses can have large genomes (�190 kb for vaccinia
virus and �236 kb for human cytomegalovirus [HCMV], for example), encoding hun-
dreds of proteins. Several studies have demonstrated that both herpes simplex viruses
(HSV) and poxviruses package high concentrations of polyamines, sufficient to neutral-
ize more than 40% of the negative charge on the DNA, depending on the virus (30, 31).
In the assembled virion, polyamines are thought to facilitate viral DNA packaging by
allowing compaction. Several RNA viruses also encapsidate polyamines but to a lesser
extent than DNA viruses, suggesting a less significant role in facilitating packaging

FIG 2 Polyamines in the context of the cell. Polyamines play diverse roles within the cell and alter many of the cellular
processes that viruses rely on for their replication, including RNA and DNA structure, protein synthesis and hypusination,
membrane interactions, and protein-RNA interactions, as highlighted. AUF1, heteronuclear RNA binding protein D; UTR,
untranslated region; HuR, embryonic lethal abnormal vision system human homologue 1.
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(32–35). Whether polyamines are enriched in viral capsids as an active process by the
virus and, importantly, whether these encapsidated polyamines play roles in addition to
packaging have not been fully explored.

Polyamines Stimulate Viral Proteins In Vitro

It has been long appreciated that polyamines stimulate activity of viral proteins in
in vitro assays. Biochemical evidence implicates polyamines in the direct stimulation of
purified HSV DNA polymerase (36–38), which falls in line with previous work suggesting
that polyamines also stimulate cellular DNA polymerases (39, 40). ORF47, a kinase of
varicella-zoster virus (VZV), a betaherpesvirus and the etiological agent of chicken pox,
is also stimulated by polyamines (41). Furthermore, the DNA-dependent RNA polymer-
ase of vaccinia virus can also be stimulated in an in vitro transcription assay with the
addition of spermine or spermidine in combination with Mg2� or Mn2� (42). These
results have offered tantalizing hints that polyamines might be important for genome
replication in these viruses. These have been followed up to some extent in cell
culture-based studies.

Polyamines in the Replication of DNA Viruses

Small-molecule inhibition of cellular polyamine synthesis suggests that polyamines
are important for the replication of several DNA viruses. Inhibition of polyamine
synthesis with difluoromethylornithine (DFMO) results in a block of both HSV and
HCMV replication (43, 44). Additionally, work characterizing the effects of polyamines
on vaccinia virus demonstrated that a late step in the viral life cycle, beyond transcrip-
tion or translation, is affected by methylglyoxal bis(guanylhydrazone) (MGBG), an
inhibitor of S-adenosylmethionine decarboxylase (SAMDC) (Fig. 1B), which is required
for the production of spermidine and spermine (45). Upon MGBG treatment of cells, the
association of viral DNA with viral replication factories was reduced. The authors
suggested that this phenotype may be a consequence of polyamines being required for
maintaining DNA conformation, fitting with this role of polyamines within the cell.
Taken together, these studies suggest that polyamines are important in the replication
of double-stranded DNA (dsDNA) viruses.

Modulation of polyamine levels by DNA viruses. Virus infection can also result in
changes in expression of proteins associated with the polyamine biosynthetic pathway.
In the case of vaccinia virus, infected cells exhibit an upregulation of ODC enzyme
activity, which is critical in polyamine biosynthesis (46). Vaccinia virus infection signif-
icantly inhibits host translation early in infection, and ODC1 is normally an unstable
enzyme with a short half-life. This suggests that vaccinia virus may have unique
mechanisms to stimulate ODC activity. Human cytomegalovirus (HCMV) similarly stim-
ulates ODC activity within infected cells (47). In addition to vaccinia virus and HCMV,
several other viruses also alter polyamine levels and biosynthetic enzymes upon
infection, including polyomavirus, adenovirus, and the RNA viruses turnip yellow
mosaic virus and hepatitis C virus (48–52), suggesting that many viruses have evolved
mechanisms to stimulate the synthesis of the polyamines they need for replication.

In contrast to the case for vaccinia virus and HCMV infection, herpes simplex virus
1 (HSV-1) or HSV-2 infection has been reported to decrease polyamine biosynthesis (53,
54). The differences between HSV and HCMV, which are alpha- and betaherpesviruses,
respectively, may reflect distinctions in the infectious cycle for these viruses, such as
HCMV’s predilection for an S-phase-like cell state or host shutoff by HSV. Whether these
changes in polyamine metabolism induced by viral infection affect the replication of
either virus is unknown.

DNA virus-encoded polyamine production. While many viruses may alter ODC
activity and polyamine metabolism, there is at least one example of a virus encoding
its own polyamine metabolism enzymes. Paramecium bursaria chlorella virus 1 (PBCV-
1), a pathogen of green algae that carries upwards of 700 open reading frames,
encodes a complete polyamine biosynthetic pathway (55–58). The presence of these
virus genes speaks to the importance of polyamines in PBCV-1 replication. Interestingly,
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the product of a gene (Bov2.b2) unique to a bovine gammaherpesvirus (bovine
herpesvirus 6) shows sequence similarity to ornithine decarboxylase, with 53 to 56%
amino acid sequence identity (59). Again, how this gene functions in the context of
infection is unknown.

Polyamines in the Replication of RNA Viruses

The role of polyamines in diverse RNA viruses has also been demonstrated. Semliki
Forest virus (SFV), an alphavirus and infrequent human pathogen, was among the first
RNA viruses to be studied in polyamine-depleted cells. Treatment of cells with DFMO
significantly reduced viral titers, which were then rescued by replenishing polyamines
exogenously (32, 60, 61). More recently, a report by Mounce et al. expanded our
knowledge of RNA viruses requiring polyamines for replication using DFMO depletion
of cellular polyamines (62, 63). The list of RNA viruses sensitive to polyamine depletion
has been extended to include diverse families, including alphaviruses (chikungunya
virus [CHIKV]), coronaviruses (Middle East respiratory syndrome [MERS] virus), entero-
viruses (enterovirus A71 and poliovirus), flaviviruses (dengue virus serotype 1, Japanese
encephalitis virus, and yellow fever virus), rhabdoviruses (rabies virus), and bunyavi-
ruses (Rift Valley fever virus) (summarized in Table 1) (62, 63). Replication of each of
these viruses was impacted to various degrees when polyamines were depleted with
DFMO and rescued when polyamines were replenished exogenously. Furthermore,
filoviruses (ebolavirus [EBOV] and marburgvirus [MARV]) were also recently shown to
require polyamines through depletion with DFMO treatment (64). Interestingly, these
diverse viruses were sensitive to polyamine depletion in several different cell types,
including transformed and primary fibroblasts, epithelial cells, neuronal cells, and
mosquito cells. This suggests that targeting of polyamines is feasible in a range of cell
types which can support various viral infections.

Polyamines in RNA virus transcription and translation. In general, polyamines
appear to be important for the midstages of the viral life cycle, e.g., gene expression
and genome replication. In SFV infection, polyamines appeared to be necessary for viral
RNA-dependent RNA polymerase (RdRP) activity, though it remains unclear whether
polymerase activity was decreased due to a lack of polyamines or reduced expression
of the polymerase itself (60). Similar to the report with SFV, polyamines also facilitated
CHIKV RdRP activity, and further exploration suggested that translation of viral tran-
scripts was also reduced. Similarly, the flaviviruses dengue virus and Zika virus were also
sensitive to a depletion of polyamines at the level of translation (62).

eIF5A and Virus Replication

Precisely how translation of viral mRNAs is impacted by polyamines had not been
fully understood, but further studies (64) highlighted the unique hypusination of eIF5A
as a critical mediator of filovirus protein translation. Perhaps unsurprisingly, given
earlier studies suggesting a role for polyamines in the life cycles of several viruses, eIF5A
can play an important gating role in virus replication. HIV was the first virus suggested
to require eIF5A (94). HIV dependence on eIF5A was reported to occur through
Rev-dependent nucleocytoplasmic transport. The HIV-1 Rev transactivator protein is
essential for the expression of viral structural proteins and mediates the translocation
of viral mRNAs from the nucleus to the cytoplasm (65). eIF5A was shown to specifically
bind to Rev (66), and eIF5A loss-of-function mutants blocked the nuclear export of Rev
protein and HIV-1 replication (67).

Recent work by Olsen et al. implicates eIF5A in the replication of two additional
viruses, ebolavirus (EBOV) and marburgvirus (MARV) (64). In addition to showing that
the function of the viral RdRP was strongly decreased in the presence of polyamine
inhibitors, the authors showed that this inhibition also occurred when hypusinated
eIF5A levels were decreased using various small molecules or when eIF5A was genet-
ically ablated. Treatment of cells with ciclopirox (an inhibitor of DOHH) during infection
with EBOV or MARV resulted in a 3-log reduction in infectious titers of these viruses,
showing that the inhibition seen using a polymerase activity assay was also observed
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in replicating virus. Further mechanistic probing using the EBOV minigenome system
suggested that hypusinated eIF5A is likely required for EBOV mRNA translation.

The requirement of hypusinated eIF5A could offer a potential mechanism for the
importance of polyamines in viral replication and will be important to study moving
forward. eIF5A has been found to be important in various aspects of protein translation.
In addition to relieving stalling at polyproline stretches (25), recent work suggests that
eIF5A is important for aiding in the translation of several additional tripeptide motifs as
well as translation termination (28), indicating that eIF5A plays a broader role in
translation than previously thought. Any one of these roles of eIF5A may provide
additional mechanisms for its potential involvement in viral translation.

Polyamines in the Host Response to Viral Infection

The requirement of both polyamines and hypusinated eIF5A for the replication of
diverse viruses suggests that cellular control of polyamines could be an effective means
of suppressing viral infection. Reducing polyamine levels could restrict the rate or even
initiation of virus replication. The interferon response, an innate response triggered by
viral infection, detects viral patterns, initiating a series of signaling events that culmi-
nate in the expression of interferon-stimulated genes (ISGs) to quell viral infection.
Several ISGs directly counteract viral infection by degrading viral RNA, altering mem-
branes, and inducing apoptosis, among many other functions. The polyamine pathway
also interfaces with the interferon response; specifically, the spermidine-spermine
acetyltransferase SAT1 is upregulated with interferon beta treatment of cells, which
results in the depletion of these polyamines and limits viral infection in cell culture (62).
Thus, SAT1 acts as a viral restriction factor that limits infection by reducing polyamine
levels in cells. Whether SAT1 is upregulated in vivo in response to viral infection is not
clear.

The Polyamine Pathway as a Therapeutic Target

The polyamine pathway has long been considered a pharmacological target due to
the upregulation in biosynthesis in several types of cancer cells. Several molecules have
been developed and tested in model organisms to target diverse cancer types (sum-
marized in Table 2 and discussed elsewhere [68]). DFMO, an inhibitor of ODC1, has
shown significant promise in the treatment of various cancers in combination therapies
(reviewed in reference 69) and is a first-line therapy in the treatment of trypanosomiasis
(70). The trypanosomes that infect via the bite of a tsetse fly show sensitivity to
polyamine depletion, and DFMO is able to target the trypanosomal ODC1 homolog
(71). Thus, DFMO by itself or in combination with other antitrypanosomal drugs has
shown efficacy in clearing the parasite. Although large doses of DFMO are required over
an extended period of time and must be administered frequently, side effects due to
the treatment are relatively mild and reversible (72–74). The success of DFMO in the
treatment of trypanosomiasis and cancers highlights a potential therapeutic avenue for
targeting the polyamine pathway for other diseases.

TABLE 2 Summary of small molecules which target the polyamine synthesis and downstream hypusination pathways

Moleculea Targetb Effect(s) on polyamine levels Reference(s)

DFMO ODC1 Inhibition of putrescine synthesis, reduced levels of all polyamines 87
MGBG SAMDC Inhibition of spermidine and spermine synthesis 88
SAM486a SAMDC Inhibition of spermidine and spermine synthesis 89
MDL-72527 PAOX Inhibition of polyamine interconversion 90
DENSpm SAT1 Acetylation of spermidine and spermine, interconversion and removal of polyamines 91
GC7 DHPS Reduction in eIF5A-deoxyhypusine and -hypusine levels 79
CPX DOHH Reduction in eIF5A-hypusine levels 92, 93
DEF DOHH Reduction in eIF5A-hypusine levels 92
aDFMO, difluoromethylornithine; MGBG, methylglyoxal (bis)guanylhydrazone; SAM486a, sardomozide; DENSpm, N1,N11-diethylnorspermine; GC7, N1-guanyl-1,7-diamine-
heptane; CPX, ciclopirox; DEF, deferiprone.

bODC1, ornithine decarboxylase 1; SAMDC, S-adenosylmethionine decarboxylase; PAOX, polyamine oxidase; SAT1, spermidine/spermine acetyltransferase 1; DHPS,
deoxyhypusine synthase; DOHH, deoxyhypusine hydroxylase.
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Given the breadth of pharmaceuticals targeting the polyamine pathway (Table 2)
and their current use, the ability to target viruses with these drugs is a practical
strategy. In several animal models, including zebrafish, Drosophila melanogaster, and
mice, extended pretreatment of the organisms with DFMO resulted in reduced titers of
Sindbis virus (SINV), CHIKV, and coxsackievirus B3 (CVB3) (62, 63). However, in the
mouse model, the reductions in viral titer in target organs were slight, suggesting that
further optimization or a combination therapy may be necessary to effectively quell
viral replication.

Another potential therapeutic approach is to target the catabolism of the biogenic
polyamines rather than to prevent their synthesis. Treatment of cells with the molecule
N1,N11-diethylnorspermine (DENSpm) results in the upregulation of SAT1 and subse-
quent acetylation of spermidine and spermine, leading to the reconversion into pu-
trescine or export. DENSpm showed activity against several different viruses in cell
culture, including positive-sense RNA viruses (CHIKV and CVB3) and negative-sense
RNA viruses (VSV), suggesting that it is effective against diverse RNA virus families (63),
and it has been tested in humans, with limited side effects (76). SAM486a, an inhibitor
of S-adenosylmethionine decarboxylase with antiviral properties against EBOV and
MARV (64), has also been tested in clinical trials for non-Hodgkin’s lymphoma, with
relatively limited toxicity and promising response rates (77). Similarly, the compound
N,N1-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), which acts by blocking poly-
amine oxidase and preventing interconversion of the polyamines, was also effective
against EBOV and MARV replication in cell culture studies (64), though no clinical trials
have investigated its use to date. Given the mechanism of action of these drugs, they
may hold promise in combatting viral infection, though further clinical trials would be
necessary to explore this avenue.

In addition to targeting polyamines, several molecules have been shown to target
the hypusination of eIF5A (reviewed in reference 78). N1-guanyl-1,7-diamine-heptane
(GC7) is a spermidine analog and competitive inhibitor of deoxyhypusine synthase (79).
Recent work shows that the use of GC7 is an effective strategy to control EBOV
replication in cell culture, suggesting that this compound may be an effective antiviral
(64). Also, the compounds ciclopirox (CPX) and deferiprone (DEF), which inhibit deoxy-
hypusine hydroxylase, have clinical applications as topical antifungal agents, and their
antiviral properties in cell culture make them enticing compounds to treat viral
infection. CPX was tested in a phase I clinical trial in patients with hematologic
malignancies, with limited side effects and promising results (reviewed in reference 80).
DEF has also been recently tested in an exploratory trial in treatment-naive HIV-1
patients. Treatment resulted in a marked decline of HIV-1 RNA, without rebound for 8
weeks, well after clearance from circulation (81).

The existence of so many molecules that can be tested for their antiviral properties
bodes well for future testing to determine if polyamines and hypusinated eIF5A can be
directly targeted to block viral infections (Table 2). Although polyamines and hypusi-
nated eIF5A are important for a number of different cellular processes, there is
precedent for targeting these pathways as an antiviral approach. It is important to note
that in animal models of viral disease tested so far, DFMO-mediated polyamine deple-
tion was not a panacea. Instead, the effect of DFMO is especially strong in certain
organs, including the kidney, liver, and intestines in a mouse model (82). Thus,
polyamine depletion may be most effective in these organs and might be used to
target viruses such as HCV and EBOV that show tropism for the liver. Additional work
will shed light on whether and how these molecules might be useful as viral thera-
peutics.

CONCLUSION

Despite their small size, the diverse roles of polyamines in cellular and viral pro-
cesses speak to their importance. Although polyamines were initially characterized in
viral studies solely based on their presence or absence in viral capsids, we are begin-
ning to appreciate the additional means by which they facilitate infection of both DNA
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and RNA viruses (summarized in Table 1). Much remains to be discovered, however,
especially concerning the precise mechanisms whereby polyamines are used in viral
replication and how they are involved in immune responses in different organisms.
With numerous drugs already developed to target the polyamine pathway that are
currently being used in the treatment of other diseases, the possibility to disturb viral
infection via the polyamine pathway presents several opportunities that should be
explored clinically.
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